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J. Phys. A: Math. Gen. 14 (1981) L113-Ll16. Printed in Great Britain 

LETTER TO THE EDITOR 

Solitary waves in a two-dimensional diatomic lattice 

G Behnke and H Buttner 
Physikalisches Institut, Universitat Bayreuth, 8580 Bayreuth, West Germany 

Received 23 February 1981 

Abstract. Static solitary excitations in a two-dimensional diatomic lattice are studied in 
detail. Our model uses a local anharmonic electron-ion coupling for the polarisability of the 
anion and harmonic couplings between different chains. This lattice may serve as a model 
for certain ferro-electric materials. Solitary finite-energy excitations are found and proved 
to be stable. 

Recently the possibility of describing nonlinear structures by solitary-wave excitations 
has found great interest in condensed matter physics (Behnke 1980, Bishop and 
Schneider 1978, Horovitz et a1 1977, Krumhansl and Schrieffer 1975, Schneider and 
Stoll 1976, Trullinger and de Leonardis 1979, Trullinger 1980). So far most of the 
models have been one-dimensional lattices with local anharmonic potentials. To our 
knowledge there is only one two-dimensional example with a special inter-chain 
coupling where solitary solutions of finite energy have been studied (Horovitz et a1 
1977). It is the aim of this work to study, for the first time, static solutions for a general 
two-dimensional diatomic lattice which may serve as a model for certain ferro-electrics. 
It will be shown that this lattice gives a physical interpretation to the model proposed by 
Horovitz et a1 (1977). Our model starts with the physical observation that in many 
ferro-electrics a strong and anharmonic polarisability of the anion determines the 
corresponding lattice dynamics (Bilz et a1 1980, Buttner and Bilz 1980, Migoni et a1 
1976, Rytz et a1 1980, Weber and Buttner 1980). Especially the dynamical properties 
of ferro-electric perovskites have been successfully described in terms of a strongly 
anisotropic quartic polarisability of the oxygen ion (Bilz et al 1980, Buttner and Bilz 
1980, Migoni et a1 1976, Rytz et a1 1980). 

In our two-dimensional lattice we again start with a highly localised electron-ion 
coupling for the anions within the chain. The main features of our lattice model can be 
seen in figure 1. It consists of diatomic chains along the x direction with a local 
anharmonic electron-ion coupling at one side and a rigid ion at the other. These chains 
are coupled by harmonic non-central forces fi and diagonal central forces f3 between 
the polarisable anions. The anharmonic potential between the electron and the ion is 
assumed to be a double-quadratic potential which has been discussed extensively (see 
Trullinger and de Leonardis 1979, Trullinger 1980). This potential has a different 
analytic form compared with the d4 model, but is quite similar in its physical content 
(see Trullinger and de Leonardis 1979, Trullinger 1980). It is assumed that it is highly 
anisotropic so that only the displacements in one direction are considered. The 
displacements of the ions M I ,  M2 and the electron Me are denoted by U Y ,  U?" and U mn, 

measured in units of the height B of the potential barrier. 
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Figure 1. A two-dimensional dialomic lattice for a model ferro-electric with central forces 
f l  to nearest neighbours and K to next-nearest neighbours within the chain ( x  direction); 
diagonal central forces f3 and non-central forces fz between the anions of different chains ( y  
direction); the ion-core-electron-shell coupling is given by a harmonic force constant gz and 
an anharmonic constant g4; lattice constants al, az and ion masses M I ,  M2. 

The Hamiltonian for the lattice shown in figure 1 is written as 

H =4 (M,(a;ln)2+M2(a2mn)2+Me(,mn)2)B2 
m,n 

+$ c {fl(U"" - u 2 m n ) 2 + f 1 ( U m n + 1 - U 2 m n ) 2 + I Y ( u ; t n  -u;"n+1)2 

) - u ; f + l  n-1 2 
+ f 2 ( u r ; n - U ; n + l n ) 2 + ~ f 3 [ ( U ; f n - u ; l + l  n + l  2 1 1  
+ g 2 ( U m n  - U;fn)*+g4(IUmn - u;""l- 1)') 

m,n 

(1) 
withf3 = 2f3a:/(af +a ; ) ,  and a i ,  a2 the equilibrium spacings in the x and y directions, 
respectively. The different chains are enumerated by m, while the different ions in the 
chain are counted by n. The three resulting equations of motion are coupled nonlinear 
difference-diff erential equations. It is assumed that the excitations are only slowly 
varying in the x direction along the chains. In this case a continuum approximation is 
appropriate. Within the adiabatic approximation for the electron motion up to second 
order in a l  the following equations of motion for u;" (x )  = U;"", u Y ( x  +;al) = uTn, 
U ( x )  = z1 mn result 

kf1c;" =gzrm+a:[Ku;"+43(U;l+l +U;"-1)]1.3+(f2+f3)(U;"+1 +U;"-'  - 2 U ; " )  (2) 

M& =f1[2(u" - u2m) + U l U , "  +4afv,",] 
Mecm = O = - g 2 Z m + f ~ [ 2 ( U ~ - z 1 m ) - a l U 2 m ,  + p 1 u 2 , , ]  

g2zm = (g2+g4)(~"' - u ; l ) - g 4  sgn(vm - U;"). 

(3) 

(4) 

( 5 )  

1 2 m  

where the nonlinearity is contained in the abbreviation 

One should note for the following treatment that u?(x +gal) has to be expanded for 
small parameter a l :  u ~ ( ~ + ~ a ~ ) = u ~ ( x ) + 4 a ~ u ~ + ~ a ~ u ~ , , + ,  . . . 

Equations (2)-(4) describe all excitations of our nonlinear two-dimensional dia- 
tomic lattice. In the harmonic, limit one, of course, obtains the phonon excitations of the 
lattice. For arbitrary spring constants g2, K ,  f3, f2 > 0 and K >f3 the harmonic lattice is 
found to be stable. 

1 2 m  
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In this work we are mainly interested in static nonlinear solutions of the above 

(i) The ground state is described by a finite relative displacement of the ions (for a 
equations, that is zi? = 0, ri2" = 0. We find the following results. 

negative coupling gz with lgzl< g4): 

U;" = *g4/(g4- lgzl) v m  = u p  = constant. (6) 

This solution is similar to that for the d4 potential. The corresponding ground-state 
energy is proportional to the number of particles in the lattice and given by E,= 
-MLg41gzl/2(g4 - lgzl), where M is the number of chains, each having a length L. 

(ii) The phonons above this ground state are identical to the harmonic phonons, if 
gz is replaced by g4 - lg21. 

(iii) The most interesting solutions, however, are the nonlinear excitations above 
the ground state. For solving the corresponding equations, it is useful to introduce the 
difference variable wm(x) = v'"(x) - u;"(x). The most general localised nonlinear 
excitations above the ground state that are continuous in the x direction and satisfy 

sgn x for m = 0 
1 for m # 0 

sgn w m  = { 
can be written as 

for m = 0 
for m # 0 A +Im(x)  sgn x 

(7) 

u;",(x) = Jm(x)  sgn x 

Uz", ( X I  = WO" (x 1 + U ;", (x 1 
(9) 

(10) 

with A =g4/(g4-/gzI). 
The quantities Im(x)  and Jm(x)  are given explicitly by the following integrals: 

2 7 r  

i = l  - 7 7  

Im(x) = 1 I dqz/2rBi(qz) exp(-ai(qz)IxI) 

Jm(x)= 1 I dq2/2rAi(q2) exp(-ai(qz)IxI). 
7r (11) 

2 

i = l  -7r 

The wavenumbers as well as the amplitudes A1, B1,2 are the following functions 
of q 2 :  

a:a:,z = [Pi f (P:  -4P~)~"1/[2fi(K +f3 cos qz)] (12) 
with 

Pi=(g4-Igzl)(f i+2(Kff~ cos qz))+2fi(fz+j3)(1-COS q2) 

Pz=4fi(fz+j3)(g4-Igzl)(K+f3 COS qz)(1-COSq2) 
(13) 

and 
AI=g4[(K+f3 C O S ~ ~ ) U : ( ~ :  -(Y;)]-~ 

Bi,z = TAifia:a:,2 [fia:a:,z - 2(g4 - IgzI)I-'. 
(14) 

These solutions are valid for arbitrary lattice parameters gz, g4, K, fz and f3. The 
solution for wm(x) describes a kink excitation in one chain, while the displacements in 
the neighbouring chains are nearly unaltered. These solutions contain in the limit 
f i +  CO and fz = -f3 those described by Horovitz et a1 (1977). Therefore it is obvious 
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that the special coupling introduced by Horovitz can be interpreted as a partial 
compensation of non-central and diagonal forces in the lattice. The solutions for U? (x) 
are different from w " ( x )  slowly oscillating functions for all chains. 

(iv) The solutions (8)-(10) are stable against small perturbations. To see this the 
static solutions are disturbed by small additive functions +?(x, t ) .  Using the fact that 
the static parts are solutions of the equations (2)-(4) and by linearisation with respect to 
the small perturbations we find three coupled linear difference-differential equations 
with non-constant coefficients. With the ansatz I/J? = f : ( x )  eiwr, i = 1 , 2 , 3  one deter- 
mines the spectrum and finds the corresponding eigenfunctions. There is a single bound 
state with w = 0 and various scattering states of odd and even parity with w 2  > 0. The 
dispersion relation for w is equivalent to that of the harmonic lattice by substituting g2 
by (g4- lg2/). Since the potential of the model ferro-electric is such that lg2/ < g4 the 
dispersion yields, the same as for the harmonic case, positive values for w 2  for arbitrary 
lattice constants and K >f3, Therefore we conclude that static excitations (8)-(10) are 
stable against small perturbations. 

(v) Another important feature of the solutions (8)-(10) is that the resulting 
excitation energy E,, = E  - E, is finite and does not depend on the size of the lattice. 
Therefore the solutions can be described as solitary excitations of the lattice. The 
explicit expression for the energy is too lengthy to be reproduced here. As an example 
we give the results for the following typical lattice parameters, lg21/2fl = 0.25, g4/2fl = 
0.27, K/2f1 = 0.1,f3/2fl = f 2 / 2 f 1  = 0.05. The ground-state energy per particle in units 
of f l  is found to be Eg = 1.69 and the corresponding excitation energy in units of E,, 
E,, = 7.12. 

Summarising it should be noted that these finite-energy excitations are really static 
and that the dynamics of our system are much more complicated than in the Horovitz 
model. There is an interaction between acoustic and optical excitations and therefore 
the static kink solution will be deformed when it moves through the lattice. More 
general, stationary solutions to equations (2)-(4) are currently under investigation and 
their relation to the structure function of the lattice will be studied in detail. Only in the 
limit of a very large cation mass M2 and very strong intra-chain coupling f l  the diatomic 
lattice reduces to a monatomic chain with local potentials. In this limit simple 
Lorentz-invariant wave-equations are found from (2)-(4). 
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